Евклидовы «Начала»

Страница 3

e. Всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых углов, эти прямые пересекаются и при том с той стороны, с которой эта сумма меньше двух прямых.

Пятый постулат известен как постулат о параллельных прямых.

Евклид приводит также девять аксиом, представляющих собой общие положения.

Теоремы геометрии, изложенные Евклидом, располагаются в такой последовательности, чтобы каждую теорему можно было доказать, используя предыдущие теоремы, постулаты, аксиомы.

Перечисление определений и аксиом, которые достаточны для проведения логического доказательства всех следующих за ними теорем геометрии, принято называть обоснованием геометрии.

Таким образом, «Начала» Евклида – первый, дошедший до нас труд по обоснованной геометрии, и в этом огромная историческая заслуга античного геометра перед наукой. «Начала» Евклида не потеряли своей ценности и поныне, несмотря на то, что со дня появления их прошло более 2000лет.

Благодаря, в первую очередь, трудам выдающегося русского математика Н.И. Лобачевского было установлено, что евклидова геометрия не является единственно возможной. 23 февраля 1826 года на заседании физико-математического отделения Казанского университета Н.И. Лобачевский сделал доклад «Сокращенное изложение начал геометрии с точным доказательством теоремы о параллельных». По образному выражению А.П. Котельникова, это было днем рождения неевклидовой геометрии.

Большая заслуга в расширении представлений о геометрических пространствах принадлежит математику Х1Х века Б Риману. Он открыл, параллельно с Лобачевским, способ построения бесконечно многих» геометрий», которые локально, «в малом» устроены почти так же, как и евклидова геометрия, но обладают кривизной. К. Гаусс, обогативший математику замечательными открытиями, ушел после доклада Римана: глубоко задумавшись, над ошеломляющими его новыми геометрическими идеями. Карл Гаусс сразу оценил новые идеи, разобрался в них, понял, но сказать в слух не решался.

Он добился избрания Н. И. Лобачевского в члены Геттенского ученого общества, но своего отношения к новой науке не высказал. Он был прозорлив в науке, но осторожен в жизни. Только после смерти из дневников и писем узнали, как высоко ценил Гаусс гениальное творение Лобачевского.

Страницы: 1 2 3 

Познавательно о обучении:

Особенности проведения уроков по химии с историческим содержанием
Существуют различные формы организации деятельности учащихся – это внеклассные и факультативные занятия, домашние задания, семинарские занятия и т.д. Основной формой организации учебной деятельности является - урок. Известно множество классификаций уроков: по основному этапу (введение, первичного о ...

Общая характеристика дифференцированного зачета по теме: «Алгебраические дроби»
Дифференцированный зачет разработан для учащихся 7 класса, которые изучают алгебру по программе МПИ-проект, разработанной авторским коллективом под руководством Э.Г. Гельфман и М.А.Холодной. В рамках этой программы создана серия учебных книг, одной из которых является книга Э.Г.Гельфман, Л.М. Алфут ...

Экономическое образование на рубеже веков. Взгляд в будущее
Действительно, развитие российской экономики и экономического образования взаимообусловлено. В этой связи надеяться, экономическое оживление в России окажет благотворное воздействие на становление в стране экономической высшей школы. Рост доходов населения увеличивает платёжеспособный спрос, а стаб ...

Категории

Copyright © 2020 www.fiteducation.ru