Евклидовы «Начала»

Страница 3

e. Всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых углов, эти прямые пересекаются и при том с той стороны, с которой эта сумма меньше двух прямых.

Пятый постулат известен как постулат о параллельных прямых.

Евклид приводит также девять аксиом, представляющих собой общие положения.

Теоремы геометрии, изложенные Евклидом, располагаются в такой последовательности, чтобы каждую теорему можно было доказать, используя предыдущие теоремы, постулаты, аксиомы.

Перечисление определений и аксиом, которые достаточны для проведения логического доказательства всех следующих за ними теорем геометрии, принято называть обоснованием геометрии.

Таким образом, «Начала» Евклида – первый, дошедший до нас труд по обоснованной геометрии, и в этом огромная историческая заслуга античного геометра перед наукой. «Начала» Евклида не потеряли своей ценности и поныне, несмотря на то, что со дня появления их прошло более 2000лет.

Благодаря, в первую очередь, трудам выдающегося русского математика Н.И. Лобачевского было установлено, что евклидова геометрия не является единственно возможной. 23 февраля 1826 года на заседании физико-математического отделения Казанского университета Н.И. Лобачевский сделал доклад «Сокращенное изложение начал геометрии с точным доказательством теоремы о параллельных». По образному выражению А.П. Котельникова, это было днем рождения неевклидовой геометрии.

Большая заслуга в расширении представлений о геометрических пространствах принадлежит математику Х1Х века Б Риману. Он открыл, параллельно с Лобачевским, способ построения бесконечно многих» геометрий», которые локально, «в малом» устроены почти так же, как и евклидова геометрия, но обладают кривизной. К. Гаусс, обогативший математику замечательными открытиями, ушел после доклада Римана: глубоко задумавшись, над ошеломляющими его новыми геометрическими идеями. Карл Гаусс сразу оценил новые идеи, разобрался в них, понял, но сказать в слух не решался.

Он добился избрания Н. И. Лобачевского в члены Геттенского ученого общества, но своего отношения к новой науке не высказал. Он был прозорлив в науке, но осторожен в жизни. Только после смерти из дневников и писем узнали, как высоко ценил Гаусс гениальное творение Лобачевского.

Страницы: 1 2 3 

Познавательно о обучении:

Игра как средство социальной адаптации
Игра издавна славится своими воспитательными особенностями. Г.В. Плеханов считал, что игра возникает в ответ на потребность общества в подготовке подрастающего поколения к жизни в этом обществе и как деятельность, отделившаяся от продуктивной трудовой деятельности и представляющая собой воспроизвед ...

Педагогический такт и культура общения учителя. Упражнения в проведение коммуникативной атаки
При помощи такта можно добиться успеха даже и в тех случаях, когда нельзя ничего сделать при помощи силы. Д. Леббок, английский моралист 1. Педагогический такт 2. Тренинг по анализу педагогических ситуаций Упражнения по развитию умений управлять общением Психология педагогического взаимодействия Пр ...

Психолого-педагогическая характеристика учащихся подросткового возраста
В развитии ребёнка в психолого-педагогической литературе определяется несколько этапов (возрастных периодов): младенчество (от рождения до 1 года); раннее детство (от года до 3 лет); дошкольный возраст (от 3 до 7 лет); младший школьный возраст (от 7 до 11 лет); подростковый, или средний школьный во ...

Категории

Copyright © 2021 www.fiteducation.ru