Евклидовы «Начала»

Страница 3

e. Всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых углов, эти прямые пересекаются и при том с той стороны, с которой эта сумма меньше двух прямых.

Пятый постулат известен как постулат о параллельных прямых.

Евклид приводит также девять аксиом, представляющих собой общие положения.

Теоремы геометрии, изложенные Евклидом, располагаются в такой последовательности, чтобы каждую теорему можно было доказать, используя предыдущие теоремы, постулаты, аксиомы.

Перечисление определений и аксиом, которые достаточны для проведения логического доказательства всех следующих за ними теорем геометрии, принято называть обоснованием геометрии.

Таким образом, «Начала» Евклида – первый, дошедший до нас труд по обоснованной геометрии, и в этом огромная историческая заслуга античного геометра перед наукой. «Начала» Евклида не потеряли своей ценности и поныне, несмотря на то, что со дня появления их прошло более 2000лет.

Благодаря, в первую очередь, трудам выдающегося русского математика Н.И. Лобачевского было установлено, что евклидова геометрия не является единственно возможной. 23 февраля 1826 года на заседании физико-математического отделения Казанского университета Н.И. Лобачевский сделал доклад «Сокращенное изложение начал геометрии с точным доказательством теоремы о параллельных». По образному выражению А.П. Котельникова, это было днем рождения неевклидовой геометрии.

Большая заслуга в расширении представлений о геометрических пространствах принадлежит математику Х1Х века Б Риману. Он открыл, параллельно с Лобачевским, способ построения бесконечно многих» геометрий», которые локально, «в малом» устроены почти так же, как и евклидова геометрия, но обладают кривизной. К. Гаусс, обогативший математику замечательными открытиями, ушел после доклада Римана: глубоко задумавшись, над ошеломляющими его новыми геометрическими идеями. Карл Гаусс сразу оценил новые идеи, разобрался в них, понял, но сказать в слух не решался.

Он добился избрания Н. И. Лобачевского в члены Геттенского ученого общества, но своего отношения к новой науке не высказал. Он был прозорлив в науке, но осторожен в жизни. Только после смерти из дневников и писем узнали, как высоко ценил Гаусс гениальное творение Лобачевского.

Страницы: 1 2 3 

Познавательно о обучении:

Подготовка к зачету
Учеников надо специально готовить к зачету. В процессе изучения темы должно отводиться специальное время на формирование и отработку умений решать задачи обязательного уровня. Поэтому при планировании уроков целесообразно предусмотреть такую работу, а в ходе ее проведения на уроке акцентировать на ...

Организация работы педагога-воспитателя
важнейшим для ребенка фактором, влияющим на его эмоциональное состояние, является окружающая его среда. Как правило, под средой развития в ДОУ понимается организация пространства и использование оборудования и другого оснащения в целях безопасности, эмоционального благополучия ребенка, его развития ...

Самостоятельность как интегративное свойство личности
Самостоятельность – независимость, свобода от внешних влияний, принуждений, от посторонней поддержки, помощи. Самостоятельность – способность к независимым действиям, суждениям, обладание инициативой, решительность В педагогике это одна из волевых сфер личности. Это умение не поддаваться влиянию ра ...

Категории

Copyright © 2019 www.fiteducation.ru