В течение двух тысяч лет геометрию узнавали из «Начал» Евклида, либо из учебников, написанных не основе этой книги. Лишь профессиональные математики обращались к трудам других великих греческих геометров: Архимеда, Апполония – и геометров более позднего времени. Классическую геометрию стали называть евклидовой в отличие от появившихся в Х1Х веке «неевклидовых геометрий».
Об этом поразительном человеке история сохранила настолько мало сведений, что нередко высказываются сомнения в самом его существовании. Что же дошло до нас: Каталог греческих геометров Прокла Диадоха Византийского, жившего в V веке нашей эры, – первый серьезный источник сведений о греческой геометрии. Из каталога следует, что Евклид был современником царя Птолемея, который царствовал с 306 до 283г. до нашей эры. Евклид должен быть старше Архимеда, который ссылался на «Начала». До нашего времени дошли сведения, что он преподавал в Александрии столице Птолемея 1, начинавшийся превращаться в один из центров научной жизни. Евклид был последователем древнегреческого философа Платона, и преподавал он, вероятно, четыре науки, которые должны предшествовать занятиям философией: арифметику, геометрию, теорию гармонии, астрономию. Кроме «Начал» до нас дошли книги Евклида, посвященные гармонии и астрономии.
Что касается места Евклида в науке, то оно определяется не столько собственными его научными исследованиями, сколько педагогическими заслугами. Евклиду приписывается несколько теорем и новых доказательств, но их значение не может быть сравнимо с достижениями великих греческих геометров: Фалеса и Пифагора, Евджокса и Тиэтета.
Величайшая заслуга Евклида в том, что он подвел итог построению геометрии и придал изложению столь совершенную форму, что на две тысячи лет «Начала» стали энциклопедией геометрии.
В период возрождения европейской математики (XVI в.) «Начала» изучали и воссоздавали заново. Логическое построение «Начал», аксиоматика Евклида воспринималась математиками как нечто безупречное до Х1Х века, когда начался период критического отношения к достигнутому, который закончился новой аксиоматикой евклидовой геометрии – аксиоматикой Д. Гильберта. Изложение геометрии в началах считалось образцом, которому стремились следовать ученые и за пределами математики.
Именно в Древней Греции появились знаменитые «Начала» Евклида, (Евклид жил и работал приблизительно две тысячи двести лет назад), где отдельные осмысленные факты были объединены в общую логическую систему.
Евклид был выдающейся личностью. Помимо «Начал» у этого мыслителя имеется много других трудов, но все же самым крупным вкладом в математику были его «Начала». До Евклида занимались подбором и обобщением фактов многие мыслители. Наиболее ранним сочинением такого рода считается книга Гиппократа Хиосского (IV в. до н.э.). Однако основы теории Евклида по своему содержанию, по глубине мысли заметно отличались, и книга Гиппократа, как впрочем, труды других мыслителей прошлого не шла в сравнение с «Началами». Как писал Прокл (V в.), Евклид многое взял от Евдокса (408–350 гг. до н.э.: ученик Платона), многое усовершенствовал в трудах Теэтета (415–369 гг. до н.э.: группа Платона) и затем, проанализировав труды своих предшественников, возвысился до создания невиданной по тем временам точно обоснованной теории.
Теория Евклида удивляет и сложным построением, и четкостью мысли, и живостью изложения. Это – первый образец построения научной системы. Теория Евклида оказала большое влияние на формирование науки в Греции, став фундаментом развития таких областей знания, как математика, философия и другие, тем культурным наследием, которое считается гордостью греческой нации.
Познавательно о обучении:
Технология триз как решение проблемы
Что же такое триз? Ответ прост – это уникальный инструмент для: - поиска нетривиальных идей, - выявления и решения многих творческих проблем, - выбора перспективных направлений развития техники, технологии и снижения затрат на их разработку и производство, - развития творческого мышления, формирова ...
Исследование уровня развития творческих способностей учащихся в условиях
современного образования
Для исследования развития творческих способностей нами был проведён формирующий эксперимент. База эксперимента: ГОСШ №1 г. Пинска, 3 "А" класс. Эксперимент проводился в несколько этапов. На первом этапе мы: А) определили цели и задачи исследования творческих способностей подросткового воз ...
Исследование уровня развития навыков говорения после проведения уроков с
применением видеоматериалов
На итоговом занятии в 6 «Б» и 7 «А» классах присутствовало по 13 человек. Для проведения исследования уровня развития навыков говорения после проведения уроков с применением видеоматериалов учащимся 7 «А» класса было предложено рассказать по составленному нами плану о себе, своих увлечениях, любимы ...