Сущность и типология занимательных задач

Страница 3

Например, однажды Витя Верхоглядкин записал выражение 25· х· 4. Потом он вместо х стал подставлять в это выражение по очереди числа 13, 21, 39, 47. Получив значение каждого произведения, он очень удивился тому, что все числа оказались «круглыми». Не могли бы вы объяснить почему?

Необычная запись, чертеж, схема . Ярким примером данного приема является задание, связанное с занимательным квадратом. Занимательный квадрат – это квадрат, разбитый на 9 клеток; в каждую клетку записывается один элемент так, чтобы суммы или произведения всех элементов по любой горизонтали, вертикали удовлетворяли определенному условию ( например, были бы равны одному и тому же элементу).

Задумай. Учитель (ученик) задумывает математический объект, а ученики (учитель) должны отгадать то, что задумано, или то, что связано с задуманным.

Пример. Я задумал два числа. Задайте только один вопрос и, выслушав ответ, скажите, одинакового ли они знака.

Найдите ошибку. Ученику предлагается отыскать ошибку (ошибки) в решении (ответе) одного или нескольких заданий.

Нарушение стереотипа. Старые, неполные знания довлеют над людьми даже после получения новых, более полных знаний. Например, изучая в течении нескольких лет положительные числа, для которых всегда справедливы неравенства х < 2х, с > 1/c , учащиеся с трудом осознают, что при прохождении темы «Отрицательные числа» эти неравенства верны не всегда. Чтобы ускорить понимание этого факта, полезно использовать задания, которые помогают школьникам сделать обобщение.

Ученые приходят к выводу, что умению работать творчески, можно специально учиться. На первых порах желательно познакомиться с опытом творческой деятельности других. Однако этого мало. Узнать новую идею – это не то же самое, что выдвинуть, предложить ее. Основное препятствие на пути поиска нового – шаблонность мышления. Поэтому ученые предлагают на первых этапах творческой деятельности использовать специальные указатели, которые помогают сдвинуть сознание с мертвой точки. Опыт показывает, что среди таких указателей могут быть приемы занимательности.

Возникает вопрос, почему именно занимательность стимулирует создание нового. Оба понятия «творчество» и «занимательность» тесно связаны. Главное заключается в том, что они оба обладают общей важнейшей характеристикой: и то и другое должно быть необычным.

Связь этих понятий подтверждается еще и тем, что они могут взаимно обогащать друг друга. Так, некоторые приемы занимательности сходны с приемами творческого мышления. И те и другие не только дают необычное направление мысли, но и часто являются непосредственным руководством к творческому действию. Таким образом, неожиданно открывается еще одно достоинство занимательного подхода: он помогает выработке творческого мышления.

Достаточно продуктивны следующие общие направления мыслительной деятельности: необычный подход к рассмотрению вопроса; поиск ассоциаций; перенос идеи из другой области знаний; «игра» с объектами и идеями.

Страницы: 1 2 3 

Познавательно о обучении:

Изучение уровня обмена веществ у учащейся молодежи
Эксперимент проводился на базе кафедры Биологии и биологического образования ЕГФ БГПУ им М.Акмуллы. в эксперименте участвовали 22 человека: 11 юношей и 11 девушек – студентов в возарсте 20 -21 год, проживающих в общежитии г.Уфы. Исследовали уровень основного обмена с помощью расчетных таблиц Бенеди ...

Профессионально-значимые свойства и качества личности учителя. Самодиагностика профессионально-личных качеств
Кто смотрит на себя, свой видит лик, Кто видит лик свой, цену себе знает, Кто знает цену, строг к себе бывает, Кто строг к себе, тот истинно велик. П. Гренгор, французкий поэт 1. Тест «Профессиональное мастерство» 2. «Карта личности педагога» 3. Профессионально значимые качества личности педагога П ...

Методика работы по раскрытию софизмов
Предъявление софизма сопровождается заданием «Найти ошибку». Необходимое условие применимости того или иного математического софизма состоит в наличии у школьников предпосылок для раскрытия этого софизма, т.е. должна быть некая база математических понятий, которой учащиеся могли бы воспользоваться ...

Категории

Copyright © 2024 www.fiteducation.ru