Применение софизмов на уроках математики

Страница 2

Неясно никому,

Как смог хозяин разместить

Гостей по одному.

Иль арифметика стара,

Иль чудо перед нами,

Понять, что, как и почему,

Вы постарайтесь сами.

Раскрытие софизма: Второй клиент остался без комнаты, т.к. о его существовании просто «забыли» при распределении номеров. Суть в том, что понятие числа неоднозначно: оно может быть и количественным и порядковым. Путём сознательного смешения понятий количественного и порядкового чисел и достигается иллюзия правдоподобности приведённого рассуждения. Мы рассуждали так: «В итоге расселения в первой комнате оказалось 2 человека – число количественное, «третий» человек был помещён во второй комнате» - число порядковое. Подобная структура рассуждений и дала возможность отвлечь внимание от факта пропуска второго клиента.

8 класс.

Софизм: Сумма углов треугольника меньше 180º.

Возьмём произвольный треугольник ABC и проведём из его вершины С две прямые CF и CG так, чтобы угол GCB был равен углу FCA – углу CAB.

Тогда сумма равна сумме внутренних углов Треугольника АСВ.

Построим на сторонах СВ и АС треугольника АВС как на диаметрах две полуокружности с центрами в точках О и О.

Из вершин А и В треугольника АСВ восстановим к основанию АВ этого треугольника перпендикуляры и продолжим их до пересечения с соответствующими окружностями в некоторых точках K и L с вершиной С. Рассмотрим два получившихся угла AKC и BLC; вершины K и L этих углов лежат на полуокружностях, стороны их опираются на диаметры этих полуокружностей, поэтому заключаем, что эти углы прямые.

Теперь из вершины С треугольника АСВ проведём прямую СН, параллельную прямой LB. Прямая СН будет также параллельна прямой KA. Действительно, прямая КА перпендикулярна ( по построению) основанию АВ треугольника АСВ, прямая LB перпендикулярна основанию АВ ( так же по построению), а прямая СН параллельна и прямой KA. Итак, прямые KA и LB параллельны между собой. Отсюда следует, чтои следовательно .

Между тем из рисунка видно, что сумма углов , меньше, чем сумма , следовательно,

,

,

а т.к. есть сумма внутренних углов треугольника АСВ, то следовательно, сумма углов треугольника меньше 180º.

Раскрытие софизма: В софизме неправильно построены точки K и L, что и привело к неверному выводу. Действительно, прямые CF и CG параллельны стороне АВ треугольника АВС, т.к. равны соответствующие внутренние накрест лежащие углы ( по построению). Поэтому перпендикуляры к АВ, восстановленные из А и В, должны быть перпендикулярами и к прямым CG и CF. Поскольку углы, образованные этими перпендикулярами и прямыми CF и СG, опираются на диаметры соответствующих окружностей, то вершины этих углов, будучи прямыми углами, должны лежать на соответствующих окружностях. Значит, прямая DC должна слиться с прямой CG. Соответственно точка К будет лежать на прямой CF и на окружности точно так же, как и точка L будет лежать на своей окружности и на прямой CG. Вследствие этого вывод софизма не будет иметь место.

Страницы: 1 2 3 4 5 6

Познавательно о обучении:

Психодиагностика в профильной подготовке учащихся
Методическое обеспечение учебного процесса по технологии, как впрочем и любого учебно-воспитательного процесса, состоит из неизменной (инвариантной) и вариативной частей. Инвариантная часть проектируется на основании той информации, которая известна до начала реализации учебного процесса по техноло ...

Методы психологического воздействия на учащихся
Если исходить из необходимости уточнения понимания того, что обозначается словосочетанием «психологическое воздействие», то соотносимое с ним явление проявляется весьма разнообразно. На уровне бытового сознания психологическое воздействие чаще всего понимается как воздействие чего-то нематериальног ...

Основные понятия и проблематика социальной работы с детьми-сиротами
Основанное на положениях ст.121 Семейного кодекса законодательное определение терминов «дети-сироты» и «дети, оставшиеся без попечения родителей» дано Законом «О дополнительных гарантиях по социальной защите детей – сирот, оставшихся без попечения родителей». Установлено, что дети-сироты – это лица ...

Категории

Copyright © 2020 www.fiteducation.ru