Организация проведения зачета

Страница 4

Учитель устно раскрывает содержание каждого задания.

I. 1. Запишите формулу нахождения координат вектора АВ по координатам его начала и конца.

II. 1. Запишите координаты середины отрезка MN через координаты его концов.

I. 2. Запишите формулу вычисления длины вектора по его координатам.

II. 2. Запишите формулу для вычисления расстояния между двумя точками.

I. II. 3. Установите, перпендикулярны ли данные векторы.

I. II. 4. Вокруг описана окружность. Укажите положение центра окружности при данном условии.

I. II. 5. Определите вид треугольника АВС, если его вершины имеют данные координаты.

Терминологический диктант. Положительная полуось, аппликата, коэффициенты разложения, тетраэдр, расчет, рассчитать, ненулевые векторы, коллинеарные, компланарные, скалярное произведение, расстояние.

Билеты к уроку-зачету

№1

1.Координаты вектора. Действия с векторами, заданными своими координатами (доказать для суммы векторов).

2.Треугольник АВС задан координатами вершин А (0;2;-1), B(1;-7;0),

С (-1;0;3). Докажите, что ABC - прямоугольный.

№2

1.Вычисление координат вектора по координатам его начала и конца (вывод формулы).

2. Прямая задана точками А(3;-1:2) и В(-1;1;2). Найти угол между прямой АВ и плоскостью хОу.

№3

1.Определение скалярного произведения векторов. Свойства скалярного произведения векторов, вытекающие из определения.

2.Ребро куба ABCDА1В1С1D1, равно . Вычислите угол между прямыми AB1 и BC1; найдите расстояние между серединами отрезков AB1 и BC1.

№4

1.Скалярное произведение векторов в координатах (вывод формулы). Следствия.

2.Длина ребра куба ABCDA1B1C1D1 равна а. Вычислите скалярное

Произведение векторов A1D и CC1; A1D и CB1.

№5

1.Свойства скалярного умножения векторов,

2.Дан куб АВСDA1B1C1D1. Точка К – середина ребра AA1, L – середина AD, М – центр грани CC1DD1. Доказать, что прямые КМ и B1L взаимно перпендикулярны.

Карточки с задачами для ассистентов

Указание: Вам предлагается решить 5 задач. Если вы в сумме наберете от 21 до 27 очков, то все ассистенты получат оценку «5», если вы наберете до 21 очка, то все получают оценку «4».

№1

Дана прямая треугольная призма ABCDA1B1C1D1 – равнобедренный, AC=CB=a, ACB = 120°, ребро BB1=a. Найти расстояние между серединами отрезков АС и BB1. Решите задачу, используя метод координат.(6 очков)

№2

Вектор компланарен векторам (1;-1;0) и (1;0;-1). Известно, что , . Найдите координаты вектора . (6 очков)

№ 3

Треугольник задан координатами своих вершин А (2;0;-1), В(3;;0), С(4;0;-1)

а) Найдите длину медианы данного треугольника, проведенной из вершины А;

б) Найдите величину . (6 очков)

№ 4

На стороне МК треугольника МКЕ взята точка Р такая, что МР=РК. Вычислите длину отрезка РЕ, если МЕ=2а, ЕК=3а, =120°. (5 очков)

Страницы: 1 2 3 4 5 6 7

Познавательно о обучении:

Подготовка к зачету
Учеников надо специально готовить к зачету. В процессе изучения темы должно отводиться специальное время на формирование и отработку умений решать задачи обязательного уровня. Поэтому при планировании уроков целесообразно предусмотреть такую работу, а в ходе ее проведения на уроке акцентировать на ...

Обзор образовательной программы по экологическому воспитанию для детей дошкольного возраста
Развитие экологического образования как нового направления дошкольной педагогики в нашей стране началось гораздо позже, чем экологического образования школьников и студентов. Несмотря на это, в настоящее время именно дошкольное звено в системе непрерывного экологического образования работает наибол ...

Особенности развития речи младших дошкольников
Речь в жизни человека играет исключительно важную роль – она служит основным средством общения людей. Ребёнок с хорошо развитой речью легко вступает в общение с окружающими, он может понятно выражать свои мысли и желания. И наоборот, невнятная речь ребёнка затрудняет его взаимоотношения со сверстни ...

Категории

Copyright © 2021 www.fiteducation.ru