Учитель устно раскрывает содержание каждого задания.
I. 1. Запишите формулу нахождения координат вектора АВ по координатам его начала и конца.
II. 1. Запишите координаты середины отрезка MN через координаты его концов.
I. 2. Запишите формулу вычисления длины вектора по его координатам.
II. 2. Запишите формулу для вычисления расстояния между двумя точками.
I. II. 3. Установите, перпендикулярны ли данные векторы.
I. II. 4. Вокруг описана окружность. Укажите положение центра окружности при данном условии.
I. II. 5. Определите вид треугольника АВС, если его вершины имеют данные координаты.
Терминологический диктант. Положительная полуось, аппликата, коэффициенты разложения, тетраэдр, расчет, рассчитать, ненулевые векторы, коллинеарные, компланарные, скалярное произведение, расстояние.
Билеты к уроку-зачету
№1
1.Координаты вектора. Действия с векторами, заданными своими координатами (доказать для суммы векторов).
2.Треугольник АВС задан координатами вершин А (0;2;-1), B(1;-7;0),
С (-1;0;3). Докажите, что ABC - прямоугольный.
№2
1.Вычисление координат вектора по координатам его начала и конца (вывод формулы).
2. Прямая задана точками А(3;-1:2) и В(-1;1;2). Найти угол между прямой АВ и плоскостью хОу.
№3
1.Определение скалярного произведения векторов. Свойства скалярного произведения векторов, вытекающие из определения.
2.Ребро куба ABCDА1В1С1D1, равно . Вычислите угол между прямыми AB1 и BC1; найдите расстояние между серединами отрезков AB1 и BC1.
№4
1.Скалярное произведение векторов в координатах (вывод формулы). Следствия.
2.Длина ребра куба ABCDA1B1C1D1 равна а. Вычислите скалярное
Произведение векторов A1D и CC1; A1D и CB1.
№5
1.Свойства скалярного умножения векторов,
2.Дан куб АВСDA1B1C1D1. Точка К – середина ребра AA1, L – середина AD, М – центр грани CC1DD1. Доказать, что прямые КМ и B1L взаимно перпендикулярны.
Карточки с задачами для ассистентов
Указание: Вам предлагается решить 5 задач. Если вы в сумме наберете от 21 до 27 очков, то все ассистенты получат оценку «5», если вы наберете до 21 очка, то все получают оценку «4».
№1
Дана прямая треугольная призма ABCDA1B1C1D1 – равнобедренный, AC=CB=a, ACB = 120°, ребро BB1=a. Найти расстояние между серединами отрезков АС и BB1. Решите задачу, используя метод координат.(6 очков)
№2
Вектор компланарен векторам
(1;-1;0) и
(1;0;-1). Известно, что
,
. Найдите координаты вектора
. (6 очков)
№ 3
Треугольник задан координатами своих вершин А (2;0;-1), В(3;;0), С(4;0;-1)
а) Найдите длину медианы данного треугольника, проведенной из вершины А;
б) Найдите величину . (6 очков)
№ 4
На стороне МК треугольника МКЕ взята точка Р такая, что МР=РК. Вычислите длину отрезка РЕ, если МЕ=2а, ЕК=3а, =120°. (5 очков)
Познавательно о обучении:
Применение программы Microsoft Office Power Point для создания ЦОР
Программа Microsoft Office Power Point традиционно используется как инструментальная среда для подготовки презентаций. Мультимедийная презентация — один из эффективных методов организации обучения на уроках, мощное педагогическое средство, выходящее за рамки традиционной классно — урочной системы. ...
Урок – основная форма организации занятий с
учащимися,отнесенными к специальной медицинской
группе
Ученики, отнесенные к специальной группе, занимаются по особой программе. В ее основу проложено содержание общей программы, из практического раздела которой исключены средства физического воспитания, способные вызывать перенапряжения организма, например, физические упражнения, приводящие к максимал ...
Понятие и сущность формирования грамматически правильной речи, особенности
усвоения детьми грамматической стороны речи
На этапах дошкольного возраста решаются важнейшие задачи речевого развития: обогащение словаря, воспитание звуковой культуры речи, формирование грамматического строя, развитие связной речи. Термин «грамматика» употребляется в языкознании в двух значениях: он обозначает, во-первых, грамматический ст ...