Еще в древности геометрия превратилась в дедуктивную, строго логическую науку, построенную на основе систем аксиом.
Первичные математические представления были в обиходе у людей на самых ранних стадиях развития человеческого общества. Хозяйственные потребности вынуждали людей совершенствовать правила счета, измерения расстояний, а также расширять объем математических понятий. Следует отметить, что на этой ступени развития математические сведения различных народов, практически не общавшихся между собой, поразительно близки по форме и содержанию. Правила вычисления объемов и площадей, использовавшиеся в Древнем Вавилоне и Египте, тождественны аналогичным правилам Древнего Китая. Свойство сторон прямоугольного треугольника, известное под именем теоремы Пифагора, было найдено для частных случаев треугольников с целочисленными сторонами задолго до Пифагора в Древнем Вавилоне. Оно было известно и в Древнем Китае. Все народы, обращаясь к изучению геометрических форм, исходят фактически из одних и тех же практических задач. Людям необходимо было различать прямоугольники, круги, треугольники, цилиндры, параллелепипеды и тетраэдры. Хозяйственные потребности вынудили постепенно выработать правила вычисления площадей и объемов наиболее простых плоских фигур и пространственных тел. Этого требовали нужды передела земель, вычисления объемов дворцов, строений, земляных работ. В начальный период развития математики были подмечены не только правила сложения целых чисел, но и многие другие закономерности, сохранившиеся в арифметике и геометрии до наших дней.
В Древней Греции были школы, в которых будущие купцы и ремесленники обучались математическим сведениям, необходимых для их предстоящей повседневной деятельности, как выражался Платон «для бытных нужд». Также существовали и такие школы, в которых математика излагалась как система научных знаний, логически выводимых из некоторых первичных положений, принимаемых за истинные, из аксиом. Древнегреческим философам был известен афоризм: «Не знающий геометрии не допускается», который, как говорят, принадлежал знаменитому Платону, повесившему его на дверях своей школы.
Познавательно о обучении:
Способы предъявления софизмов
Способы предъявления софизмов могут быть различными. Рассмотрим некоторые из них. 1. Текст софизма записывается на доску до начала урока и учитель обращает внимание учеников, что они могут во время перемены подумать над заданием. В начале урока учитель даёт ещё 3-5 минут на обдумывание, после чего ...
Особенности развития познавательных процессов в студенческий период
К познавательным психическим процессам относятся психические процессы, связанные с восприятием и переработкой информации. В их число входят: ощущения, восприятия, представления, память, воображение, мышление, речь. В современной психологической литературе можно встретить противоположные точки зрени ...
Психолого-педагогические основы изучения понятия одарённость
Под одарённостью ребёнка понимается более высокое, чем у его сверстников при прочих равных условиях, восприимчивость к учению и более выраженные творческие проявления. Понятие "одарённость" происходит от слова "дар". Таким образом, одаренность – это дар и означает особо благопри ...