Обобщенная теорема синусов

Страница 2

Теорема 3.4: Биссектрисы трех внутренних углов треугольника конкурентны.

Окружность с центром в точке I и радиуса r касается всех трех сторон и поэтому является вписанной окружностью.

Вписанная и вневписанная окружности

На рисунке изображена вписанная окружность, касающаяся сторон ВС, СА и АВ в точках X, Y, Z. Так как две касательные к окружности, проведенные из внешней точки, равны, то получаем, что |AY|=|AZ|, |BZ|=|BX|, |CX|=|CY|. На рисунке длины этих отрезков обозначены x, y, z так что y+z=a, z+x=b, x+y=c.

Складывая эти равенства и используя введенное Эйлером обозначение s для полупериметра (от «semiperimetr»), получим 2x+2y+2z= a + b + c=2s, поэтому x + y + z=s, т.е. справедлива.

Теорема 4.1: Для треугольника, изображенного на рисунке, выполняются соотношения:

x=s-a,

y=s-b,

z=s-c.

Так как треугольник IBC имеет основание равное а, высоту r, то его площадь равна: Прибавив к нему аналогичные выражения для и мы получим: следовательно, теорема доказана.

Теорема 4.2: Для треугольника, изображенного на рисунке, выполняется соотношение:

SABC = sr.

На рисунке изображен треугольник , стороны которого являются биссектрисами внешних углов треугольника АВС. Любая точка на биссектрисе угла В равноудалена от прямых АВ и ВС. Аналогично: любая точка на прямой равноудалена от прямых ВС и СА.

Следовательно, точка I, в которой эти биссектрисы пересекаются, находится на одинаковом расстоянии r от всех трех сторон. Так как I равноудалена от сторон АВ и АС, то она должна принадлежать множеству точек, равноудаленных от этих прямых, то есть она должна лежать на прямой А1, внутренней биссектрисе угла А.

Теорема 4.3: Внешние биссектрисы любых двух углов треугольника конкурентны с внутренней биссектрисой третьего угла.

Окружность с центром в точке I радиуса r, касающаяся всех трех сторон треугольника, является одной из трех вневписанных окружностей. Каждая из вневписанных окружностей касается одной из сторон треугольника внутри, а двух других сторон (продолженных) извне.

Обозначив точки касания как на рисунке, две касательные из одной точки к окружности имеют одинаковые длины, то: ;

Следовательно, касательная из точки В (или любой другой вершины) к вневписанной окружности, расположенной за противолежащей стороной, имеет длину s. Действительно: .

Кроме того, так как: .

И так далее, то также и: .

3.5 Теорема Штейнера-Лемуса

Теорема 5.1: Любой треугольник, у которого равны длины биссектрис двух углов (измеряемые от вершины до противоположной стороны), является равнобедренным.

Одно из простейших доказательств этой теоремы опирается на следующие две леммы:

Лемма 5.1.1: Если две хорды окружности стягивают различные острые углы с вершинами на этой окружности, то меньшему углу соответствует меньшая хорда.

Доказательство: Две равные хорды стягивают углы с вершиной в центре окружности и равные углы (как их половины) с вершинами в соответствующих точках на окружности. Из двух неравных хорд более короткая, находясь дальше от центра, стягивает меньший угол с вершиной в центре и, следовательно, меньший острый угол с вершинами на окружности.

Страницы: 1 2 3

Познавательно о обучении:

Особенности воспитательного процесса
детский сад япония дошкольное образование Группы в японских детских садах маленькие: 6-8 человек. И каждые полгода их состав переформировывается. Делается это для того, чтобы предоставить малышам более широкие возможности для социализации. Если у ребенка не сложились отношения в одной группе, то вп ...

Подбор упражнений для коррекции низкой двигательной активности
Упражнения с мячом: бросание вверх (без ловли), вдаль; бег за мячиком; скатывание с наклонных поверхностей (горка, желоб, доска) в сочетании с бегом; удары ногой (футбол); прокатывание по полу (резко, с силой) между ног назад и бег за мячом; перебрасывание через голову назад; бросание вниз из полож ...

Роль современного географического образования в развитии познавательной активности учащихся
На протяжении весьма длительного времени (с 1934 г. до конца 1980-х гг.) содержание школьной географии, в сущности, отражало содержание географии как академической науки. В качестве «основ наук» выступали системы знаний. Например, при изучении физической географии выделялись геолого-геоморфологичес ...

Категории

Copyright © 2019 www.fiteducation.ru