Серединный треугольник и прямая Эйлера

Страница 5

5. прямые, которые выходят из вершины треугольника и делят противоположные стороны пропорционально одним и тем же самым тригонометрическим функциям прилежащих углов

6. прямые, которые соединяют вершины треугольника с точками касания соответственных вневписанных окружностей.

Задачи 1-6 являются вспомогательными задачами, готовящими ученика к самостоятельной деятельности. Схематично задача А вместе с серией вспомогательных задач А1, А2, ……Аn изображается так: А1 – А2 – А3 – …-Аn. Самостоятельная деятельность ученика начинается с решения задачи А (тригонометрическая теорема Чевы). Если ученик за определенное время не может решить её, то приступает к решению первой вспомогательной задачи А1: А-А1 (теорема Чевы). В случае решения задачи А1 ученик возвращается к задаче А1: А – А1. Если задача А снова не решается, то ученик обращается к задаче А2. Решив задачу А2, возвращается к задаче А и т.д.

Возможен случай, когда школьник не сможет решить вспомогательную задачу А1. Тогда он приступает к решению задачи А2. От задачи Аn ученик последовательно возвращается к задаче А.

Вернемся к тригонометрической форме теоремы Чевы, которая является основной задачей и предлагается доказать ученику самостоятельно.

Домашнее задание:

Решить задачи 5-6.

По учебнику найти, какие точки называются замечательными. Подготовить доклад о найденных замечательных точках.

Вырезать из плотного картона остроугольный треугольник.

Замечательные точки

Этап 1. Проверка домашнего задания. Повторение.

Этап 2. Введение нового материала (метод – объяснительно-иллюстративный и частично поисковый).

Слова учителя:

Существует много специальных точек и линий, связанных с треугольником. Мы уже упоминали одну такую точку – центр окружности, описанной вокруг треугольника.

Условимся обозначать ее О. Она является точкой пересечения трех перпендикуляров, делящих пополам стороны треугольника. Радиус описанной окружности был уже обозначен буквой R. Эти 2 чертежа заранее приготовлены на доске.

Ученики конспектируют определения, понятия и делают записи и чертежи. Чевианы, которые связывают вершины треугольника с серединами противоположных сторон, называются медианами. На рисунке отрезки АА`, BB` и CC` – медианы, так что |BA`|=|A`C|, |CB`|=|B`A| и |AC`|=|C`B|. Применяя теорему 2, делаем вывод, что медианы конкурентны. Их общая точка G называется центроидом треугольника. Если бы треугольник был вырезан из однородного материала, то он оставался бы в равновесии, будучи подвешенным в этой точке. Другими словами, центроид есть «центр тяжести» треугольника. Для наглядности учащиеся берут сделанные дома заготовки и проверяют последнее утверждение.

Рассмотрим 2 треугольника SGBA`= SGA`C.

Что вы можете сказать про эти 2 треугольника?

Равны они или нет?

Нет.

Почему?

Они не равны, так как у них разные длины боковых сторон, а основания равны.

У них равны только основания?

Нет.

Какие еще элементы у них равны?

У них равны высоты.

Почему?

Их высоты равны, потому что вершины этих треугольников находятся в одной точке, а их основания лежат на основании треугольника АВС.

А что вам известно про треугольники с равными основаниями и высотами?

Их площади равны.

И так, мы обнаружили, что SGBA`= SGA`C, так как эти треугольники имеют одинаковые основания и одну и ту же высоту. На рисунке обозначим эти площади одной и той же буквой х.

А что можно сказать про треугольники BGC`, AGC`, CGB`, AGB`?

Площади треугольников BGC`, AGC` и CGB`, AGB` равны, так как у этих треугольников равны высоты и основания.

То есть, делаем вывод, что SGCB` = SGB`A и SGAC` = SGC`B.

Обозначим эти площади через y и z, и отметим это на чертеже.

А что вы можете сказать про треугольники CAC` и CC`B?

Их площади SCAC` = SCC`B так же равны между собой.

Чему равна площадь треугольника SCAC`?

SCAC` = 2y + z.

Чему равна площадь треугольника SCC`B?

SCC`B = 2x + z.

Но так как SCAC` = SCC`B, то 2y + z = 2x + z, сократим слева и справа равные элементы, получим 2y = 2x, а следовательно x = y.

Страницы: 1 2 3 4 5 6 7 8 9 10

Познавательно о обучении:

Игры и упражнения для развития речи младших дошкольников
Воспитание звуковой культуры речи включает работу по обучению правильному звукопроизношению, которая всегда выделялась как ведущая линия развития речи детей 3—4 лет. Для развития артикуляционного аппарата широко используются звукоподражательные слова, голоса животных. Например, детям даются музыкал ...

Организация внеучебной деятельности младших школьников в рамках реализации ФГОС второго поколения
Внеурочная (внеучебная) деятельность учащихся - деятельностная организация на основе вариативной составляющей базисного учебного (образовательного) плана, организуемая участниками образовательного процесса, отличная от урочной системы обучения: экскурсии, кружки, секции, круглые столы, конференции, ...

Анализ причин неудач и трудностей в обучении обследованных детей
Анализируя причины неудач и трудностей в обучении всех обследованных ребят, можно отметить: · снижение «чувства языка»; · языковая интерференция в условиях билингвального обучения. · несформированный внутренний механизм освоения языка ребёнка; · низкий уровень лингвистической одарённости ребёнка; · ...

Категории

Copyright © 2019 www.fiteducation.ru