Серединный треугольник и прямая Эйлера

Страница 9

В силу того, что теоретическая часть этого занятия носит исключительно ознакомительный характер, то на этапе решения задач предполагается решение задач подготавливающих к введению нового материала следующего занятия и повторение ранее изученного материала.

Решение задач:

1. Докажите, что прямые, содержащие высоты треугольника, пересекаются в одной точке, которая называется ортоцентром треугольника.

2. В остроугольном треугольнике АВС проведены высоты Докажите, что треугольники подобны треугольнику АВС.

3. Треугольник , вершинами которого являются основания высот треугольника АВС. Найдите углы ортоцентрического треугольника остроугольного треугольника АВС, если углы треугольника АВС равны А, В, С.

4. Докажите, что высоты остроугольного треугольника являются биссектрисами его ортоцентрического треугольника.

5. Найдите углы ортоцентрического треугольника тупоугольного треугольника, если углы треугольника АВС равны А, В, С (угол С тупой).

6. Найдите углы всех треугольников, которые подобны своим ортоцентрическим треугольникам.

7. Дан остроугольный треугольник АВС. Докажите, что точки, симметричные ортоцентру треугольника АВС относительно его сторон, лежат на окружности, описанной около этого треугольника.

8. Продолжения высот остроугольного треугольника АВС пересекают описанную окружность в точках. Докажите, что а) треугольник подобен ортоцентрическому треугольнику треугольника АВС и коэффициент подобия равен 2, б) высоты треугольника АВС являются биссектрисами треугольника .

9. Пусть Н – ортоцентр треугольника АВС. Докажите, что радиусы окружностей, описанных около треугольников АВН, ВСН и САН равны между собой и равны радиусу окружности, описанной около треугольника АВС.

Домашнее задание:

Решить задачи 6-9 и дорешать задачи из классной работы.

Подготовить доклад на тему «Ортотреугольник»

Ортотреугольник

Этап 1. Проверка домашнего задания и разбор не решенных задач.

Этап 2. Повторение ранее изученного материала.

Этап 3. Введение нового материала (объяснительно иллюстративный метод).

Прежде всего, учащиеся формулируют определение ортоцентра треугольника и ортоцентрического треугольника. Далее учащиеся записывают формулировку теоремы.

Теорема 6.1: Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.

Одно из простейших доказательств опирается на две следующие леммы:

Две следующие леммы, используемые для доказательства теоремы 6.1 уже хорошо известны учащимся из курса планиметрии.

Лемма 6.1.1: Если две хорды окружности стягивают различные острые углы с вершинами на этой окружности, то меньшему углу соответствует меньшая хорда.

Доказательство: Две равные хорды стягивают равные углы с вершиной в центре окружности и равные углы (как их половины) с вершинами в соответствующих точках на окружности. Из двух неравных хорд более короткая, находясь дальше от центра, стягивает меньший угол с вершиной в центре и, следовательно; меньший угол с вершиной на окружности.

Лемма 6.1.2: В треугольнике с двумя различными углами меньший угол обладает большей биссектрисой.

Доказательство:

Пусть АВС – треугольник, в котором угол В меньше угла С, как на рисунке; пусть отрезки ВМ и CN делят пополам углы В и С. Мы хотим доказать, что . Возьмём точку М` на отрезке ВМ так, чтобы . Так как этот угол равен углу M`BN, то четыре точки N, B, C, M` лежат на одной окружности. Поскольку то . По лемме 1.6.1 . Следовательно,

Страницы: 4 5 6 7 8 9 10 11 12

Познавательно о обучении:

План-конспект уроков технологии
Урок № 1 Раздел программы: Работа с бумагой и картоном Тема: Аппликация «Полярная ночь» Класс: 1 класс Время работы: 45 минут Цели урока: Образовательная: познакомить с таким природным явлением, как северное сеяние, учить приёмам сгибания и складывания бумаги; учить выполнять аппликацию из цветной ...

Система методических приёмов и упражнений, направленных на овладение учащимися словарным богатством русского языка
В методике различают словарно-семантическое и словарно-орфографические направления словарной работы. Рассмотрим словарную работу, как единство этих двух видов. На уроке учителя должны интересовать не только собственно словарные слова, незнакомые учащимся, но и обычные наши родные слова, о которых В ...

Контроль знаний и умений учащихся по физике
Контроль знаний и умений учащихся является важным звеном учебного процесса, от правильной постановки которого во многом зависит успех обучения. Выделяют следующие цели контроля знаний и умений учащихся: – диагностирование и корректирование знаний и умений учащихся; – учет результативности отдельног ...

Категории

Copyright © 2025 www.fiteducation.ru