Серединный треугольник и прямая Эйлера

Страница 10

Доказательство теоремы 6.1:

При доказательстве этой теоремы важно обратить внимание учащихся на построении структуры логических рассуждений, которые делают доказательство данной теоремы более коротким.

Часто случается, что теорема может быть выражена в форме «противоположной к обратной» – эквивалентной первоначальной.

Например, вместо того, чтобы сказать: «Все люди смертны», мы можем также сказать «Бессмертные не есть люди».

Вместо доказательства самой теоремы 6.1. нам достаточно доказать, что если в треугольнике АВС: , то . Но это есть прямое следствие леммы 6.1.2.

Теорема 6.2: Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.

Учащимся предлагается самостоятельно показать доказательство этой теоремы дома.

Мы уже отметили на рисунке, что . А так как отрезок HD перпендикулярен отрезку DB, то и отрезок FD должен быть перпендикулярен отрезку OB. Перпендикулярность отрезков DE и OC, а также EF и OA показывается аналогично.

Решение задач:

Задачи 1-7 из задачника.

Домашнее задание:

Решить задачи 8-11 из задачника.

Этап 1. Проверка домашнего задания. Особое внимание уделяется проверке доказательства теоремы 6.2.

Этап 2. Повторение ранее изученного материала. Проводится сначала письменный опрос учащихся по материалу предыдущих уроков. После окончания работы ученики сдают листочки со своими ответами, и начинается устный опрос по тем же самым вопросам, что дает возможность учащимся проверить их работы.

Этап 3. Введение нового материала.

Учащиеся записывают определение:

Треугольник, полученный соединением середин сторон данного треугольника, назовем серединным треугольником.

На доске по заготовленному за ранее чертежу ведется объяснение.

На рисунке A`B`C` есть срединный треугольник треугольника АВС. Рассмотрим так же две медианы AA` и BB`, пересекающиеся в точке G, две высоты треугольника ABC, пересекающиеся в точке H, и две высоты треугольника A`B`C` пересекающиеся в точке O.

Что вы можете сказать про треугольники АВС и А`B`C`? Какие они?

Стороны треугольника A`B`C` параллельны сторонам треугольника АВС, поэтому эти треугольники подобны.

Далее, |C`B`|=1/2|BC|, поэтому отношение длин любых двух соответствующих отрезков (а не только соответствующих сторон) будет равно1:2. В действительности, отрезки B`C`, C`A`, A`B` разбивают треугольник ABC на четыре конгруэнтных треугольника. Кстати, точка P –середина отрезка B`C` – также является и серединой отрезка AA`

Далее мы видим, что AC`A`B` – параллелограмм, следовательно, прямая AA` делит пополам отрезок B`C`. Поэтому медианы треугольника A`B`C` лежат на медианах треугольника ABC, а это значит, что оба треугольника имеют один и тот же центроид G.

Высоты треугольника A`B`C`, изображенные на рисунке, являются срединными перпендикулярами сторон AB и BC треугольника ABC. Отсюда делаем вывод, что точка O – ортоцентр треугольника A`B`C` – является время и центром окружности, описанной вокруг треугольника ABC.

Так как точка H – ортоцентр треугольника ABC, а точка O – ортоцентр подобного ему треугольника A`B`C`, то |AH| = 2 |OA`|. По теореме 3.2 |AG| + 2 |GA`|. И так как оба отрезка, AD и OA`, перпендикулярны стороне BC, то они параллельны. Следовательно,

ÐHAG = ÐOA`G, Ñ HAG ¥ Ñ OA`G и ÐAGH = Ð A`GO.

Этим показано, что точки O, G, H коллинеарны и |HG| = 2 |GO|, то есть справедлива

Теорема 7.1: Ортоцентр, центроид и центр описанной окружности произвольного треугольника лежат на одной прямой. Центроид делит расстояние от ортоцентра до центра описанной окружности в отношении 2:1.

Решение задач:

№55 из задачника.

Домашнее задание:

Учить все определения и теоремы.

Окружность девяти точек

Рассмотрим рисунок. На нем точки K, L, M – середины отрезков AH, BH, CH, лежащих на высотах.

Страницы: 5 6 7 8 9 10 11 12

Познавательно о обучении:

Особенности руководства экспериментальной деятельностью дошкольника
Роль педагога в экспериментировании является ведущей в любом возрасте. Педагог непосредственно участвует в эксперименте таким образом, чтобы быть для детей равноправным партнером, руководить экспериментом так, чтобы у детей сохранялось чувство самостоятельности открытия. Подготовка к проведению экс ...

Якоб Штейнер
Якоб Штейнер родился в 1796 году в Швейцарии в семье крестьянина. В молодости был пастухом. Грамоте Якоб научился лишь в возрасте 19 лет в школе своего знаменитого соотечественника, педагога – демократа Иоганна Генриха Песталоцци (1746–1827). В общей педагогической системе Песталоцци геометрия как ...

Закрепление языкового материала
Кроме требований, относящихся к подбору материала для наблюдения вновь изучаемого грамматического явления, необходимо соблюдать требования к отбору соответствующих способов работы над этим материалом. Остановимся на нескольких аспектах, важных при организации закрепления грамматического материала н ...

Категории

Copyright © 2024 www.fiteducation.ru