Серединный треугольник и прямая Эйлера

Страница 8

Обозначив точки касания как на рисунке, т.к. две касательные из одной точки к окружности имеют одинаковые длины, то: ;

Следовательно, касательная из точки В (или любой другой вершины) к вневписанной окружности, расположенной за противолежащей стороной, имеет длину s. Действительно: .

Кроме того, так как: .

И так далее, то также и: .

Решение задач:

1. Пусть М – точка на стороне АС треугольника АВС. Обозначим через R1 и R2 радиусы окружностей, описанных около треугольников АВМ и СВМ соответственно. Докажите, что R1 относится к R2, как АВ к ВС.

2. Даны окружность и точка А вне ее. АВ и АС – касательные к окружности (В и С – точки касания). Докажите, что середины двух дуг, на которые разделена данная окружность точками В и С, являются центром вписанной и вневписанной окружности треугольника АВС.

3. Пусть J – центр окружности, вписанной в треугольник АВС, Ja – центр вневписанной окружности (касающейся сторон ВС и продолжений сторон АВ и АС). Докажите, что точки В, С, J, Ja – расположены на одной прямой.

4. Пусть J – центр окружности, вписанной в треугольник АВС. Докажите, что прямая AJ проходит через центр окружности, проходящей через точки В, С и J.

5. Пусть Ja – центр вневписанной окружности. Найдите угол AJaB, если угол АВС равен b.

6. Три окружности радиусам 1, 2, 3 попарно касаются друг друга внешним образом. Найдите радиус окружности, проходящей через точки касания этих окружностей.

Домашнее задание:

Решить задачи 5-6 и доделать задачи из классной работы.

Сделать доклад о Штейнере и Лемусе.

Теорема Штейнера-Лемуса

Этап 1. Проверка домашнего задания.

Этап 2. Повторение ранее изученного материала.

Учащиеся формулируют определения и теоремы, изученные на прошлых уроках.

Этап 3. Введение нового материала (объяснительно иллюстративный способ).

Учащиеся рассказывают подготовленную историческую справку о Штейнере и о Лемусе.

Ученики записывают формулировку теоремы.

Теорема 5.1: Любой треугольник, у которого равны длины биссектрис двух углов (измеряемые от вершины до противоположной стороны), является равнобедренным.

Одно из простейших доказательств этой теоремы опирается на следующие две леммы:

Лемма 5.1.1: Если две хорды окружности стягивают различные острые углы с вершинами на этой окружности, то меньшему углу соответствует меньшая хорда.

Доказательство: Две равные хорды стягивают углы с вершиной в центре окружности и равные углы (как их половины) с вершинами в соответствующих точках на окружности. Из двух не равных хорд более короткая, находясь дальше от центра, стягивает меньший угол с вершиной в центре и, следовательно, меньший острый угол с вершинами на окружности.

Учащиеся дома должны записать это доказательство в символьной форме

Лемма 5.1.2: В треугольнике с двумя различными углами меньший угол обладает большей биссектрисой.

Доказательство: Пусть АВС – треугольник, в котором угол В меньше угла С, как на рисунке; пусть отрезки BM и CN делят пополам углы В и С. Мы хотим доказать, что |BM|>|CN|. Возьмем точку М` на отрезке ВМ так, чтобы ÐM`CN=1/2 ÐB. Так как это угол равен углу M`BN, то четыре точки N, B, C, M` на одной окружности. Поскольку ÐB < 1/2(ÐB+ÐC) < 1/2(ÐA+ÐB+ÐC), то ÐCBN < M`CB <90°.

По лемме 5.1.1 |CN|<|M`B|. Следовательно, |BM|>|BM`|>|CN|.

Доказательство теоремы: Часто бывает, что теорема может быть выражена в форме «противоположной к обратной» – эквивалентной к обратной. Вместо доказательства теоремы 5.1 для нас будет достаточно доказать, что если в треугольнике АВС: В ¹ С, то |BM| ¹ |CN|. Но это есть прямое следствие леммы 5.1.2.

Страницы: 3 4 5 6 7 8 9 10 11 12

Познавательно о обучении:

Наука в период независимости
Важным фактором и предпосылкой развития образования, культуры, повышение качества рабочей силы всегда была наука. Без мощной научной базы эффективная рыночная экономика просто не может развиваться. До обретения Украиной независимости украинская культура была слишком ориентирована на потребности вое ...

Должностные обязанности офицера-воспитателя кадетского корпуса и профессиональные требования к нему
Кадетские роты (сотни) формируются по строевому расчету. Рота состоит из взводов по 20 воспитанников в каждом взводе. Взвод состоит из отделений по 10 воспитанников в каждом отделении. Руководство ротой осуществляется командиром роты (сотни), руководство взводами, его помощниками – офицерами-воспит ...

Исторический аспект патриотического воспитания
Вопросы патриотического воспитания молодого поколения в духе любви к Родине и преданности Отечеству, законопослушных граждан государства всегда стояли в центре внимания ученых на протяжении всей истории развития человечества. Великие философы, педагоги уделяли этому вопросу значительное внимание с ...

Категории

Copyright © 2019 www.fiteducation.ru