Серединный треугольник и прямая Эйлера

Страница 4

5. Найдите биссектрисы треугольника, если одна из его сторон равна а, а прилежащие к этой стороне углы равны и .

Блок 2.

6. Найдите угол А треугольника АВС, если известно, что радиус описанной около этого треугольника окружности равен 6, а сторона ВС равна 3.

7. Найдите сторону ВС треугольника АВС, если известно, что угол А равен 70 градусам и радиус описанной окружности равен 4.

8. Найдите радиус описанной около треугольника окружности, если одна его сторона равна 4, противоположный ей угол равен 55 градусам.

Домашнее задание:

Учить новый материал.

Задачи: Придумать 3 задачи на применение обобщенной теоремы синусов.

Сделать доклад на тему: «Джованни Чева – его теоремы и тд.»

Так же нужно вспомнить, как связаны площади треугольников с равными высотами и их основания.

Задание «Сделать доклад» дается 2 группам учащихся (каждая группа состоит максимум из 3 человек), предполагается соревновательная форма работы.

Теорема Чевы

Этап 1. Организационный момент. Проверка домашнего задания. Повторение изученного материала.

Этап 2. Введение нового материала.

Вы уже хорошо знакомы с понятием треугольник. Давайте вспомним, какие линии в треугольнике вам известны?

Учащиеся перечисляют известные им линии треугольника. Особое внимание учитель обращает на медиану, высоту и биссектрису. Далее учитель просит учащихся проанализировать эти три линии и найти их общие черты и различия. Учащиеся должны увидеть, что каждая из этих линии это отрезок, выходящий из вершины треугольника, соединяющий вершину с точкой на противоположной стороне.

Вводится определение.

Отрезок, соединяющий вершину треугольника с некоторой точкой на противоположной стороне, называется чевианой.

Краткая историческая справка.

Этот термин происходит от имени итальянского математика Джованни Чевы, который в 1678 году опубликовал следующую очень полезную теорему:

Учащиеся записывают

Теорема 2.1: Если три чевианы AX, BY, CZ (по одной из каждой вершины) треугольника АВС конкурентны, то:

.

Когда мы говорим, что три прямые (или отрезка) конкурентны, то имеем в виду, что все они проходят через одну точку, которую обозначим через Р.

Как результат выполненного домашнего задания учащиеся под руководством учителя формулируют факт о том, что площади треугольников с равными высотами пропорциональны основаниям треугольников.

Для доказательства этой теоремы (как только что было уточнено) вспомним, что площади треугольников с равными высотами пропорциональны основаниям треугольников.

Далее, путем построения простой логической цепочки рассуждений ученики выводят следующие факты:

Для доказательства справедливости утверждения теоремы классу предлагается проверить ее утверждение, используя уже полученный результат.

Классу сообщается, что теорема, обратная к этой теореме, также верна.

Ученикам предлагается сформулировать теорему обратную к исходной. Ученики формулируют и записывают:

Теорема 2.2: Если три чевианы AX, BY, CZ удовлетворяют нижеприведенному соотношению, то они конкурентны:

.

Доказательство этой теоремы можно предложить ученикам выполнить дома, в случае, если на дом ученикам дается другое задание, то доказательство можно провести на занятии. В зависимости, от планов учителя, доказывать теорему могут ученики или он сам.

Решение задач:

Следующим этапом предлагаются задачи с нарастающей трудностью:

Доказать, что в треугольнике АВС в одной точке пересекаются:

1. медианы треугольника

2. биссектрисы внутренних углов треугольника

3. высоты треугольника

4. прямые, выходящие из вершины треугольника с точками касания вписанной в него окружности

Страницы: 1 2 3 4 5 6 7 8 9

Познавательно о обучении:

Анализ анкетирования родителей
Анкетирование было проведено на общем родительском собрании 18.10.2004 года. В опросе участвовало 52 человека, это составляет 26% от количества занимающихся в нашей школе детей. По результатам опроса выявлено, что большее количество родителей имеют среднее специальное образование по рабочим специал ...

Педагогический такт и культура общения учителя. Упражнения в проведение коммуникативной атаки
При помощи такта можно добиться успеха даже и в тех случаях, когда нельзя ничего сделать при помощи силы. Д. Леббок, английский моралист 1. Педагогический такт 2. Тренинг по анализу педагогических ситуаций Упражнения по развитию умений управлять общением Психология педагогического взаимодействия Пр ...

Общая характеристика дифференцированного зачета по теме: «Алгебраические дроби»
Дифференцированный зачет разработан для учащихся 7 класса, которые изучают алгебру по программе МПИ-проект, разработанной авторским коллективом под руководством Э.Г. Гельфман и М.А.Холодной. В рамках этой программы создана серия учебных книг, одной из которых является книга Э.Г.Гельфман, Л.М. Алфут ...

Категории

Copyright © 2025 www.fiteducation.ru