Система требований, предъявляемых к качеству средств информатизации образования

Страница 8

Интеллектуальное воспитание и интеллектуальное развитие - два взаимосвязанных, но не тождественных, аспекта образовательного процесса. В связи с этим, рассмотрена теория интеллектуального воспитания учащихся, основанная на онтологической концепции интеллекта, в соответствии с которой интеллектуальное воспитание - создание условий для совершенствования интеллектуальных возможностей каждого ребёнка за счет обогащения его умственного опыта (М.А. Холодная). Анализ содержания этой теории и теорий в рамках когнитивного подхода в психологии, личностно-ориентированного и компетентностного подходов в обучении, исследование возможностей использования их основных положений при разработке проблемы осуществления интеллектуального воспитания учащихся при обучении геометрии показали, что в организации обучения геометрии должно найти отражение следующее.

Во-первых, для создания предпосылок успешного осуществления сложного процесса переработки информации, нужно соблюдать соответствие учебного материала когнитивным процессам (когнитивный аспект умственного опыта). Поэтому необходимо исследовать возможности представления учебного содержания школьного курса геометрии в виде различных моделей, для адекватного использования их учениками, как одного из средств обучения различным способам кодирования учебной информации курса геометрии.

Во-вторых, в соответствии с современными тенденциями построения содержания образования в качестве необходимых единиц усвоения, кроме теоретического компонента, должны быть выделены знания о знаниях, способах их добывания, открытия, условиях использования и др. – метазнания и метаумения (В.П. Беспалько, И.Я. Лернер, Н.Ф. Талызина, И.С. Якиманская и др.). В них раскрывается организация интеллектуальной деятельности субъекта, т.к. они выполняют функцию инструмента познания. Следовательно, возникает необходимость выявления в школьном курсе геометрии таких средств, использование которых позволит ученику регулировать процесс учебно-познавательной деятельности при усвоении содержания школьного курса геометрии (метакогнитивный аспект умственного опыта).

В-третьих, установлено, что обогащение эмоционально-оценочного опыта учащихся осуществляется через развитие познавательного интереса, активизирующего учебную деятельность учащихся, а также через предоставление ученику возможности построения собственной «образовательной траектории», что предполагает формирование у школьников психологической структуры деятельности (И.Я. Лернер, А.В. Хуторской, Т.И. Шамова, Г.И. Щукина и др.). Поэтому задаче обогащения этой формы умственного опыта при обучении геометрии необходимо подчинить все компоненты методической системы обучения, что позволит создать положительную мотивацию и активизировать познавательный интерес учащихся к процессу изучения школьного курса геометрии (эмоционально-оценочный аспект умственного опыта).

Процесс обучения геометрии в условиях интеллектуального воспитания рассматривается как активная целенаправленная интеллектуальная деятельность ученика. Активность – результат внутреннего процесса целенаправленной саморегуляции человека (Л.С. Выготский, О.А. Конопкин, Н.А. Менчинская, В.И. Моросанова и др.). Внешнее выражение саморегуляции – управление собственной деятельностью – то есть, такое воздействие на процесс, которое ведёт к достижению поставленных целей (В.П. Беспалько, В.Л. Матросов, В.А. Трайнев, В.Д. Шадриков и др.).

Итак, в методической системе обучения геометрии, направленной на интеллектуальное воспитание учащихся, должны быть отражены все указанные аспекты умственного опыта ученика и объединяющий их, аспект саморегуляции учеником собственной учебно-познавательной деятельности. Содержание индивидуального умственного опыта, обогащение которого происходит в процессе активной целенаправленной интеллектуальной деятельности учащихся при изучении геометрии, определяется трансформацией указанных аспектов в организацию этого процесса. Именно в организации процесса обучения математике, в частности, - геометрии, лежит причина трудностей учащихся. А.Н. Колмогоров, Б.В. Гнеденко и др. считали, что для усвоения курса математики общеобразовательной школы достаточны обычные средние способности. Главное, что ученику необходимы навыки управления своей учебно-познавательной деятельностью, общие и специфические для усвоения геометрии умения, содействующие его интеллектуальному становлению.

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Познавательно о обучении:

Виды научно-исследовательских работ
Основными видами являются: подготовка обзорного реферата на определенную тему, отдельные исследования в ходе практических и лабораторных работ, при подготовке докладов и выступлений на конференциях и семинарах, разработке отдельных научно-исследовательских вопросов в курсовых и дипломных работах, и ...

Система методических приёмов и упражнений, направленных на овладение учащимися словарным богатством русского языка
В методике различают словарно-семантическое и словарно-орфографические направления словарной работы. Рассмотрим словарную работу, как единство этих двух видов. На уроке учителя должны интересовать не только собственно словарные слова, незнакомые учащимся, но и обычные наши родные слова, о которых В ...

Новое экономическое образование 21 века
Реформы в России нуждаются в выработке и развитии нового экономического мышления, в качественном прорыве в уровне экономического образования. Все еще сказываются традиции советского периода, когда экономические исследования и дисциплины были оторваны от мировой науки, а сама экономическая теория ос ...

Категории

Copyright © 2019 www.fiteducation.ru