Во втором параграфе «Роль школьного курса геометрии в развитии интеллектуальных способностей» представлена часть категориального аппарата, связанная с понятием «интеллектуальное умение» для которого родовым является понятие интеллектуального действия (А.В. Запорожец), и результаты анализа соотношения понятий «умения» и «способности». С.Л. Рубинштейном отмечено, что интеллектуальная деятельность регулируется с помощью определённых умений, которые, включаясь в уже существовавшую целостную систему умений ученика, развивают его интеллектуальные способности. Анализ исследований, связанных с экспериментально - психологическими теориями интеллекта, позволил выявить основополагающие для школьного курса геометрии способности, характеризующие развитый интеллект человека. Это - понимание, моделирование, способность к индуктивному и дедуктивному рассуждениям, и обучаемость, как результат их развития.
Особое место в процессе обучения геометрии занимает преобразование информации способом алгоритмизации, в результате использования которого декларативные знания преобразуются в процедурные (предписания), что необходимо для усвоения геометрии. Наличие предписаний, содержащих в себе эвристическую составляющую, является естественным для специфики предмета геометрии. Анализ методов решения геометрических задач, выполненный с целью выяснения возможностей использования предписаний для их решения, показал, что алгоритмизации подлежат задачи на построение и задачи, решаемые аналитическими методами (таблица 2). Наглядным способом фиксации структурных взаимосвязей между данными и искомыми объектами является блок-схемная форма записи предписаний, которая отражает сочетание визуального и словесно-речевого способов кодирования информации, а процесс составления и использования блок-схем – предметно-практический и сенсорно-эмоциональный способы.
Таблица 2 Перечень типов и классов геометрических задач школьного курса геометрии, подлежащих алгоритмизации
|
Типы задач |
Классы задач, для решения которых используются предписания (продукционные модели) |
|
I – задачи на геометрические построения |
Задачи на построение плоских фигур - методом геометрических мест точек - методом подобия Задачи на построение на проекционном чертеже: - построение сечений многогранников - построение изображений пирамид, призм, круглых тел - построение изображений перпендикуляров и связанных с ними - изображений элементов фигур |
|
II – задачи на векторный метод |
Задачи: - на выполнение операций над векторами - на доказательство равенства векторов - на доказательство коллинеарности векторов - на доказательство перпендикулярности векторов |
|
III – задачи на координатный метод |
Задачи: - на применение координат двух точек и, сводящиеся к ним - связанные с окружностью - связанные с прямой - на вычисление координат вектора - на разложение вектора по двум неколлинеарным векторам - на доказательство равенства векторов - на доказательство коллинеарности векторов - на доказательство перпендикулярности векторов |
На этапе применения нужная учебная информация (знания) воспроизводится из памяти, и продолжается её запоминание на новом уровне. Этап применения – многогранен, он предполагает разноуровневость использования полученных знаний. Сами по себе математические знания и умения еще не определяют уровень умственного развития человека, без умения использовать их в новых нестандартных ситуациях, без готовности к самостоятельному решению новых учебных проблем, не обязательно из области математики (А. Д. Александров). Поэтому выполнение учебно-познавательной деятельности на этом этапе предполагает обязательное наличие различных способов переноса (Е.Н. Кабанова-Меллер), являющегося показателем сформированности умения.
Познавательно о обучении:
Анализ и интерпретация результатов социально-психологического исследования
Для исследования нами были отобраны две выборки студентов АУЦА: первая группа была представлена студентами 4 курса факультета менеджмента, в чьих занятиях проводились имитационные игры. Вторая группа – это студенты 4 курса факультета журналистики, у них имитационные игры в процессе обучения не испо ...
Влияние личных качеств воспитателя на взаимоотношения с
воспитанниками-подростками
Педагогическая, воспитательная деятельность в Кадетском корпусе — совместная деятельность, и ее успех зависит от того, какие отношения сложились между воспитателем и воспитанником. Именно воспитатель должен уметь правильно устанавливать правильные взаимоотношения и развивать их в нужном направлении ...
Методы восстановления при гностических нарушениях детей-билингвов
Соматогностические нарушения 1. «Тактильное домино» Правила игры те же, что и в обычном домино, но игральные «кости» особые, например: справа – наждачная бумага, слева – глянцевая поверхность; справа – бархатная бумага, слева – мех; справа – ребристая поверхность «в клеточку», слева – гладкая и т.п ...